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We study the region of complete localization in a class of random operators which in-
cludes random Schrödinger operators with Anderson-type potentials and classical wave
operators in random media, as well as the Anderson tight-binding model. We establish
new characterizations or criteria for this region of complete localization, given either
by the decay of eigenfunction correlations or by the decay of Fermi projections. (These
are necessary and sufficient conditions for the random operator to exhibit complete
localization in this energy region.) Using the first type of characterization we prove that
in the region of complete localization the random operator has eigenvalues with finite
multiplicity.

1. INTRODUCTION

We study localization in a class of random operators which includes
random Schrödinger operators with Anderson-type potentials and classical
wave operators in random media, as well as the Anderson tight-binding
model. For these operators localization is obtained either by a multiscale
analysis,(7,10,13–16,22,23,25–30,33,35,36,40,41,43,44,46,48,53,54,56) or, in certain cases, by
the fractional moment method.(1,2,4,5,47,57) In addition to pure point spectrum with
exponentially localized eigenfunctions, localization proved by a either a multiscale
analysis or the fractional moment method always include other properties such as
dynamical localization.(1,2,5,17,32,33)

In ref.(37) we proved a converse to the multiscale analysis: the region of
dynamical localization coincides with the region where the multiscale analysis
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(and the fractional moment method, when applicable) can be performed. We
also gave a large list of characterizations of this region of localization, that is,
necessary and sufficient conditions to be satisfied by the random operator in this
energy region for a multiscale analysis to be performed at these energies (Ref.(37),
Theorem 4.2). This region of localization is the analogue for random operators of
the region of complete analyticity for classical spin systems(20,21). For this reason
we call it the region of complete localization. (Note that the spectral region of
complete localization is called the strong insulator region in ref.(37) and the region
of complete localization is called the region of dynamical localization in ref.(39).)

In this article we establish two new consequences of the multiscale analysis
that are also characterizations of the region of complete localization, given either
by the decay of eigenfunction correlations or by the decay of Fermi projections.
Using the characterization by the decay of eigenfunction correlations we prove
that in the region of complete localization the random operator has eigenvalues
with finite multiplicity.

In the one-dimensional case the multiplicity of eigenvalues is easily seen to be
always less than or equal to 2. But for d > 1 this had only been previously known
for in two cases. The first is the Anderson tight-binding model with bounded
density for the probability distribution of the single site potential, which has
simple eigenvalues in the region of localization(45,52) The second is its continuum
analogue, Anderson-type Hamiltonians in the continuum with bounded density
for the probability distribution of the strength of single site potential, for which
the finite multiplicity of eigenvalues in the region of localization is known(13).
(Although Simon’s original proof for the Anderson model(52) does not shed light
on the continuum, the recent proof by Klein and Molchanov(45) indicates that these
Anderson-type Hamiltonians in the continuum should have simple eigenvalues in
the region of localization. The missing ingredient is a continuous analogue of
Minami’s estimate.(49))

Our proof of finite multiplicity of eigenvalues only requires the conditions
for the multiscale analysis, so it applies in great generality. It neither requires
probability distributions with bounded densities, nor the unique continuation prop-
erty for eigenfunctions, both requirements for the Combes and Hislop result(13).
In particular, our result applies to random Landau Hamiltonians(14,35,39,56) and
to classical wave operators (e.g., acoustic and Maxwell operators) in random
media(27,28,43)

We first characterize the region of complete localization by the decay of the
expectation of eigenfunction correlations (Theorem 1). We call this characteriza-
tion the strong form of “Summable Uniform Decay of Eigenfunction Correlations”
(SUDEC). SUDEC has also an almost-sure version which is essentially equivalent
to the SULE (“Semi Uniformly Localized Eigenfunctions”) property introduced
in ref. (18, 19). This almost-sure SUDEC is a modification of the WULE (“Weakly
Uniformly Localized Eigenfunctions”) property in ref.(31). (See also ref.(55) for
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related properties.) But although SUDEC has a strong form (i.e., in expectation),
SULE does not by its very definition.

Recently detailed almost-sure properties of localization like SULE or
SUDEC, which go beyond exponential localization or almost-sure dynamical
localization, turned out to be crucial in the analysis of the quantum Hall effect.
In ref.(24), SULE is used to prove the equivalence between edge and bulk
conductance in quantum Hall systems whenever the Fermi energy falls into a
region of localized states. In refs. (11, 12), SUDEC is used to regularize the edge
conductance in the region of localized states and get its quantization to the desired
value. In ref.(39), SUDEC is the main ingredient for a new and quite transparent
proof of the constancy of the bulk conductance if the Fermi energy lies in a region
of localized states.

It is well known that in the region of complete localization the random
operator has pure point spectrum with exponentially decaying eigenfunctions.
(29, 23, 41) The SULE property is also known with exponentially decaying eigenfunc-
tions. (32, 33) Theorem 1 yields easily an almost-sure SUDEC (and SULE)
with sub-exponentially decaying eigenfunctions. Combining the proof of ref.(31)

Theorem(1.5) with the argument in refs. (23, 41), we obtain a form of SUDEC with
exponentially decaying eigenfunctions (Theorem 2). (See ref.(38) for more on
SUDEC and SULE.)

We conclude with a characterization of the region of complete localization
by the decay of the expectation of the operator kernel of Fermi projections (The-
orem 3), a crucial ingredient in linear response theory and in explanations of the
quantum Hall effect. (3, 6, 9, 39)

The derivation of SUDEC and of the decay of Fermi projections from the
multiscale analysis is based on the methods developed in ref.(33) and, in the case of
the Fermi projections, the sub-exponential kernel decay for Gevrey-like functions
of generalized Schrödinger operators given in ref.(8). That they characterize the
region of complete localization relies on the converse to the multiscale analysis,
the fact that slow transport implies that a multiscale analysis can be performed (37).

This article is organized as follows: We introduce random operators, state
our assumptions, and define the region of complete localization in Section 2
We state our results in Section 3 Theorem 1 and its corollaries are proved in
Section 4 Theorem 2 is proved in Section 5 The proof of Theorem 3 is given in
Section 6

Notation: We set 〈x〉 :=
√

1 + |x |2 for x ∈ Rd . By �L (x) we denote the
open cube (or box) �L (x) in R

d (or Z
d ), centered at x ∈ Z

d with side of length
L > 0; we write χx,L for its characteristic function, and set χx := χx,1. Given
an open interval I ⊂ R, we denote by C∞

c (I ) the class of real valued infinitely
differentiable functions on R with compact support contained in I , with C∞

c,+(I )
being the subclass of nonnegative functions. The Hilbert-Schmidt norm of an
operator A is written as ‖A‖2, i.e., ‖A‖2

2 = tr A∗ A. Ca,b,..., Ka,b,..., etc., will always
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denote some finite constant depending only on a, b, . . .. (We omit the dependence
on the dimension d in final results.)

2. RANDOM OPERATORS AND THE REGION OF COMPLETE

LOCALIZATION

In this article a random operator is a Zd -ergodic measurable map Hω from
a probability space (�,F , P) (with expectation E) to generalized Schrödinger
operators on the Hilbert space H, where either H = L2(Rd , dx ; C

n) or H =
�2(Zd ; C

n). Generalized Schrödinger operators are a class of semibounded second
order partial differential operators of Mathematical Physics, which includes the
Schrödinger operator, the magnetic Schrödinger operator, and the classical wave
operators, eg., the acoustic operator and the Maxwell operator. (See ref.(34) for a
precise definition and (41) for examples.) We assume that Hω satisfies the standard
conditions for a generalized Schrödinger operator with constants uniform in ω.

Measurability of Hω means that the mappings ω → f (Hω) are weakly (and
hence strongly) measurable for all bounded Borel measurable functions f on R.
Hω is Zd -ergodic if there exists a group representation of Zd by an ergodic family
{τy ; y ∈ Z

d} of measure preserving transformations on (�,F , P) such that we
have the covariance given by

U (y)HωU (y)∗ = Hτy (ω) for all y ∈ Z
d , (2.1)

where U (y) is the unitary operator given by translation: (U (y) f )(x) = f (x −
y). (Note that for Landau Hamiltonians translations are replaced by magnetic
translations.) It follows that there exists a nonrandom set � such that σ (Hω) =
� with probability one, where σ (A) denotes the spectrum of the operator A.
In addition, the decomposition of σ (Hω) into pure point spectrum, absolutely
continuous spectrum, and singular continuous spectrum is also the same with
probability one. (E.g., refs. (50, 54).)

We assume that the random operator Hω satisfies the hypotheses of (33, 37) in
an open energy interval I. These were called assumptions or properties SGEE,
SLI, EDI, IAD, NE, and W in refs. (33, 35, 37, 41). (Although the results in ref.(37) are
written for random Schrödinger operators, they hold without change for general-
ized Schrödinger operators as long as these hypotheses are satisfied.) Although
we assume a polynomial Wegner estimate as in ref.(37), our results are still valid
if we only have a sub-exponential Wegner estimate, with the caveat that one must
substitute sub-exponential moments for polynomial moments (see ref.(37) Remark
2.3). In particular, our results apply to Anderson or Anderson-type Hamiltonians
without the requirement of a bounded density for the probability distribution of
the single site potential.

Property SGEE guarantees the existence of a generalized eigenfunction ex-
pansion in the strong sense. We assume that Hω satisfies the stronger trace estimate
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ref.(33) Eq. (2.36), as in ref.(37). (Note that for classical wave operators we always
project to the orthogonal complement of the kernel of Hω, see refs. (33, 42, 43).)
For some fixed κ > d

2 (which will be generally omitted from the notation) we let
Ta denote the operator on H given by multiplication by the function 〈x − a〉κ ,
a ∈ Z

d , with T := T0. Since 〈a + b〉 ≤ √
2〈a〉〈b〉, we have

‖TbT −1
a ‖ ≤ 2

κ
2 〈b − a〉κ . (2.2)

The domain of T , D(T ), equipped with the norm ‖φ‖+ = ‖T φ‖, is a Hilbert
space, denoted by H+ . The Hilbert space H− is defined as the completion of H
in the norm ‖ψ‖− = ‖T −1ψ‖. By construction, H+ ⊂ H ⊂ H− , and the natural
injections ı+ : H+ → H and ı− : H → H− are continuous with dense range. The
operators T+ : H+ → H and T− : H → H−, defined by T+ = T ı+ , and T− = ı−T
on D(T ), are unitary. We define the random spectral measure

µω(B) := tr{T −1 PB,ωT −1} = ‖T −1 PB,ω‖2
2, (2.3)

where B ⊂ R is a Borel set and PB,ω = χB(Hω). It follows from(33), Eq. (2.36)
that for P-a.e. ω we have

µω(B) = µω(B ∩ �) ≤ K B∩�, (2.4)

where K B := K B∩� is independent of ω, increasing in B ∩ �, and K B < ∞ if
B ∩ � is bounded. Using the covariance (2.1), for P-a.e. ω and all a ∈ Z

d we have

µa,ω(B) := ‖T −1
a PB,ω‖2

2 = ‖T −1 PB,τ (−a)ω‖2
2 = µτ (−a)ω(B) ≤ K B . (2.5)

We have a generalized eigenfunction expansion for Hω: For P-a.e. ω there exists
a µω-locally integrable function Pω(λ) : R → T1(H+,H−), the Banach space of
bounded operators A : H+ → H− with T −1

− AT −1
+ trace class, such that

tr
{
T −1

− Pω(λ)T −1
+

} = 1 for µω-a.e. λ, (2.6)

and, for all Borel sets B with B ∩ � bounded,

ı− Pω(B)ı+ =
∫

B
Pω(λ) dµω(λ), (2.7)

where the integral is the Bochner integral of T1(H+,H−)-valued functions. More-
over, if φ ∈ H+, then Pω(λ)φ ∈ H− is a generalized eigenfunction of Hω with
generalized eigenvalue λ (i.e., an eigenfunction of the closure of Hω in H− with
eigenvalue λ) for µω-a.e λ. (See ref.(42), Section 3, for details.)

The multiscale analysis requires the notion of a finite volume operator, a
“restriction" Hω,x,L of Hω to the cube (or box) �L (x), centered at x ∈ Z

d with
side of length L ∈ 2N (assumed here for convenience; we may take L ∈ L0N for a
suitable L01 as in ref.(39)), where the “randomness based outside the cube �L (x)"
is not taken into account. We assume the existence of appropriate finite volume
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operators Hω,x,L for x ∈ Z
d with L ∈ 2N satisfying properties SLI, EDI, IAD, NE,

and W in the open interval I. (See the discussion in ref.(39), Section 4.)
The region of complete localization CL

I for the random operator Hω in
the open interval I is defined as the set of energies E ∈ I where we have the
conclusions of the bootstrap multiscale analysis, i.e., as the set of E ∈ I for
which there exists some open interval I ⊂ I, with E ∈ I , such that given any
ζ , 0 < ζ < 1, and α, 1 < α < ζ−1, there is a length scale L0 ∈ 6N and a mass
m > 0, so if we set Lk+1 = [Lα

k ]6N, k = 0, 1, . . . , we have

P {R (m, Lk, I, x, y)} 1 − e−Lζ

k (2.8)

for all k = 0, 1, . . ., and x, y ∈ Zd with |x − y| > Lk + �, where

R(m, L , I, x, y) = (2.9)

{ω; for every E ′ ∈ I either �L (x) or �L (y) is (ω, m, E ′)-regular} .

Here [K ]6N = max{L ∈ 6N; L ≤ K } (we work with scales in 6N for conve-
nience); ρ > 0 is given in Assumption IAD, if dist(�L (x),�L ′ (x ′)) > �, then
events based in �L (x) and �L ′(x ′) are independent. Given E ∈ R, x ∈ Z

d and
L ∈ 6N, we say that the box �L (x) is (ω, m, E)-regular for a given m > 0 if
E /∈ σ (Hω,x,L ) and

‖�x,L Rω,x,L (E)χx, L
3
‖ ≤ e−m L

2 , (2.10)

where Rω,x,L (E) = (Hω,x,L − E)−1 and �x,L denotes the charateristic function of
the “belt" �L−1(x)\�L−3(x). (See refs.(33, 41)). We will take H = L2(Rd , dx ; C

n),
but the arguments can be easily modified for H = �2(Zd ; Cn).)

By construction CL
I is an open set. It can be defined in many ways, we gave

the most convenient definition for our purposes. (We refer to ref.(37), Theorem 4.2)
for the equivalent properties that characterize CL

I . The spectral region of complete
localization in I, CL

I ∩ �, is called the “strong insulator region" in ref.(37).) Note
that CL

I is the set of energies in I where we can perform the bootstrap multiscale
analysis. (If the conditions for the fractional moment method are satisfied in I, CL

I
coincides with the set of energies in I where the fractional moment method can
be performed.) By our definition spectral gaps are (trivially) intervals of complete
localization.

3. THEOREMS AND COROLLARIES

In this article we provide two new characterizations of the region of complete
localization. The first characterizes the region of complete localization by the
decay of the expectation of generalized eigenfunction correlations, the second by
the expectation of decay of Fermi projections.
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We start with generalized eigenfunctions. Given λ ∈ R and a ∈ Z
d we set

Wλ,ω(a) :=




sup
φ∈H+

Pω(λ)φ �=0

‖χaPω(λ)φ‖
‖T −1

a Pω(λ)φ‖ if Pω(λ) �= 0,

0 otherwise,

(3.1)

Wλ,ω(a) is a measurable function of (λ, ω) for each a ∈ Z
d with

Wλ,ω(a) ≤ 〈
√

d
2 〉κ = (

1 + d
4

) κ
2 . (3.2)

Our first characterization is given in the following theorem.

Theorem 1. Let I be a bounded open interval with Ī ⊂ I. If Ī ⊂ CL
I , then for

all ζ ∈]0, 1[ we have

E

{∥∥Wλ,ω(x)Wλ,ω(y)
∥∥

L∞(I,dµω(λ))

}
≤ CI,ζ e−|x−y|ζ for all x, y ∈ Z

d . (3.3)

Conversely, if (3.3) holds for some ζ ∈]0, 1[, then I ⊂ CL
I .

Note that the converse will still hold if we only have fast enough polynomial
decay in (3.3).

Remark 1. We may replace the denominator ‖T −1
a Pλ,ωφ‖ in (3.1) by

�a(φ) := inf
b∈Z2

{〈b − a〉κ ∥∥T −1
b Pλ,ωφ

∥∥}
.

Since �a(φ) ≤ ∥∥T −1
a Pλ,ωφ

∥∥, this slightly improves (3.3).

Corollary 1. Hω has pure point spectrum in the open set CL
I for P-a.e. ω,

with the corresponding eigenfunctions decaying faster than any sub-exponential.
Moreover, we have (with Pλ,ω := P{λ},ω)

E

{∥∥µω({λ}) (tr Pλ,ω)
∥∥

L∞(I,dµω(λ))

}
≤ CI < ∞, (3.4)

and hence for P-a.e. ω the eigenvalues of Hω in CL
I are of finite multiplicity.

It is well known that Hω has pure point spectrum in CL
I with exponentially

decaying eigenfunctions. Our point is that pure point spectrum follows directly
from (3.3), also yielding sub-exponentially decaying eigenfunctions. The estimate
(3.4) is new, and it immediately implies that for P-a.e. ω the random operator Hω

has only eigenvalues with finite multiplicity in CL
I .
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If Hω has pure point spectrum we might as well work with eigenfunctions,
not generalized eigenfunctions. Given λ ∈ R and a ∈ Zd we set

Wλ,ω(a) :=




sup
φ∈H

Pλ,ωφ �=0

‖χa Pλ,ωφ‖
‖T −1

a Pλ,ωφ‖ if Pλ,ω �= 0,

0 otherwise,

(3.5)

and

Zλ,ω(a) :=



‖χa Pλ,ω‖2

‖T −1
a Pλ,ω‖2

if Pλ,ω �= 0,

0 otherwise.
(3.6)

Wλ,ω(a) and Zλ,ω(a) are measurable functions of (λ, ω) for each a ∈ Z
d . They are

covariant, that is,

Yλ,ω(a) = Yλ,τ (b)ω(a + b) for all b ∈ Z
d , with Y = W or Y = Z . (3.7)

It follows from (2.7) that i− Pλ,ω + = Pω(λ)µω({λ}). Since Pλ,ω �= 0 if and
only if µω({λ}) �= 0, we have Wλ,ω(a) = Wλ,ω(a) if µω({λ}) �= 0 and Wλ,ω(a) = 0
otherwise. Combining this fact with the definition of the Hilbert-Schmidt norm
and (3.2) we get

Zλ,ω(a) ≤ Wλ,ω(a) ≤ Wλ,ω(a) ≤ (
1 + d

4

) κ
2 . (3.8)

Remark 2. Hω has pure point spectrum in an open interval I if and only if for
P-a.e. ω we have Wλ,ω(a) = Wλ,ω(a) for all a ∈ Z

d and µω-a.e. λ ∈ I .

Thus we have the following corollary to Theorem 1.

Corollary 2. Let I be a bounded open interval with Ī ⊂ I. If Ī ⊂ CL
I , Hω has

pure point spectrum in Ī for P-a.e. ω and for all ζ ∈]0, 1[ and x, y ∈ Z
d we have

E

{∥∥Zλ,ω(x)Zλ,ω(y)
∥∥

L∞(I,dµω(λ))

}
≤ CI,ζ e−|x−y|ζ , (3.9)

E

{∥∥Wλ,ω(x)Wλ,ω(y)
∥∥

L∞(I,dµω(λ))

}
≤ CI,ζ e−|x−y|ζ . (3.10)

Conversely, if Hω has pure point spectrum in P for �-a.e. ω, and either (3.9) or
(3.10) holds for some ζ ∈]0, 1[, we have I ⊂ CL

I .

We now turn to almost sure consequences of Theorem 1.

Corollary 3. Let I be be a bounded open interval with Ī ⊂ CL
I . The following

holds for P-a.e. ω: Hω has pure point spectrum in I with finite multiplicity, so let
{En,ω}n∈N be an enumeration of the (distinct) eigenvalues of Hω in I , with νn,ω

being the (finite) multiplicity of the eigenvalue En,ω. Then:
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(i) Summable Uniform Decay of Eigenfunction Correlations (SUDEC): For each
ζ ∈]0, 1[ and ε > 0 we have

‖χxφ‖‖χyψ‖ ≤ CI,ζ,ε,ω‖T −1φ‖‖T −1ψ‖〈y〉d+ε e−|x−y|ζ , (3.11)

‖χxφ‖‖χyψ‖ ≤ CI,ζ,ε,ω‖T −1φ‖‖T −1ψ‖〈x〉 d+ε
2 〈y〉 d+ε

2 e−|x−y|ζ , (3.12)

for all φ,ψ ∈ Ran PEn,ω,ω, n ∈ N, and x, y ∈ Z
d .

(ii) Semi Uniformly Localized Eigenfunctions (SULE): There exist centers of

localization {yn,ω}n∈N for the eigenfunctions such that for each ζ ∈]0, 1[ and
ε > 0 we have

‖χxφ‖ ≤ CI,ζ,ε,ω‖T −1φ‖〈yn,ω〉2(d+ε) e−|x−yn,ω |ζ , (3.13)

for all φ ∈ Ran PEn,ω,ω, n ∈ N, and x ∈ Z
d . Moreover, we have

NL ,ω :=
∑

n∈N;|yn,ω |≤L

νn,ω ≤ CI,ωLd for all L ≥ 1. (3.14)

(iii) SUDEC and SULE for complete orthonormal sets: For each n ∈ N let
{φn, j,ω} j∈{1,2,...,νn,ω} be an orthonormal basis for the eigenspace Ran PEn,ω,ω, so
{φn, j,ω}n∈N, j∈{1,2,...,νn,ω} is a complete orthonormal set of eigenfunctions of Hω

with energy in I . Then for each ζ ∈]0, 1[ and ε > 0 we have

‖χxφn,i,ω‖‖χyφn, j,ω‖ ≤ CI,ζ,ε,ω

√
αn,i,ω

√
αn, j,ω〈y〉d+ε e−|x−y|ζ , (3.15)

‖χxφn,i,ω‖‖χyφn, j,ω‖ ≤ CI,ζ,ε,ω

√
αn,i,ω

√
αn, j,ω〈x〉 d+ε

2 〈y〉 d+ε
2 e−|x−y|ζ , (3.16)

‖χxφn, j,ω‖ ≤ CI,ζ,ε,ω

√
αn, j,ω〈yn,ω〉2(d+ε) e−|x−yn,ω |ζ , (3.17)

for all n ∈ N, i, j ∈ {1, 2, . . . , νn,ω}, and x, y ∈ Zd , where

αn, j,ω := ‖T −1φn, j,ω‖2, n ∈ N, j ∈ {1, 2, . . . , νn,ω}, (3.18)∑
j∈{1,2,...,νn,ω}

αn, j,ω = µω({En,ω}) for all n ∈ N, (3.19)

∑
n,∈N, j∈{1,2,...,νn,ω}

αn, j,ω =
∑
n∈N

µω({En,ω}) = µω(I ). (3.20)

Remark 3. The statements (i) and (ii) are essentially equivalent, and imply finite
multiplicity for eigenvalues, while (iii) does not, see ref.(38). Note that in (ii) eigen-
functions associated to the same eigenvalue have the same center of localization.
It is easy to see that (3.11) implies (3.12), the reverse implication also being true
up to a change in the constant – both forms of SUDEC are useful.

If I is a bounded open interval with Ī ⊂ CL
I , it is known that that for P-a.e.

ω the operator Hω has pure point spectrum in I with exponentially decaying
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eigenfunctions.(23, 29, 41) The SULE property is also known with exponential
decay. (32, 33) Combining the proof of ref.(31), Theorem 1.5, with the argument
in refs.(23, 41) we also obtain SUDEC with exponential decay for P-a.e. ω.

Theorem 2. Let I be be a bounded open interval with Ī ⊂ CL
I . For all φ ∈ H+

and λ ∈ I set αλ,φ := ‖T −1Pω(λ)φ‖2. The following holds for P-a.e. ω and µω-
a.e. λ ∈ I : For all ε > 0 there exists mε = m I,ε > 0 such that for all φ,ψ ∈ H+
we have

‖χx Pω(λ)φ‖‖χyPω(λ)ψ‖
≤ CI,ε,ω

√
αλ,φαλ,ψ e(log 〈x〉)1+ε

e(log 〈y〉)1+ε

e−mε |x−y| (3.21)

for all x, y ∈ Z
d . In particular, it follows that Hω has pure point spectrum in I

with exponentially decaying eigenfunctions.

Unlike Theorem 1, Theorem 2 does not give a characterization of the region
of complete localization. But it still implies that Hω has only eigenvalues with
finite multiplicity in I .(38)

Compared to the rather short and transparent proof of (3.12), the proof of
(3.21) is quite technical and involved – an extra motivation for deriving (3.12).

We now turn to the characterization in terms of the decay of Fermi projections.
We set P (E)

ω := P]−∞,E],ω, the Fermi projection corresponding to the Fermi energy
E .

Theorem 3. Let I and I1 be bounded open intervals with Ī ⊂ I1 ⊂ Ī1 ⊂ CL
I .

If Ī ⊂ CL
I Let I be be a bounded open interval with Ī ⊂ I. If Ī ⊂ CL

I , then for
all ζ ∈]0, 1[ we have

E

{
sup
E∈I

∥∥χx P (E)
ω χy

∥∥2

2

}
≤ CI,ζ e−|x−y|ζ for all x, y ∈ Z

d . (3.22)

Conversely, if (3.22) holds for some ζ ∈]0, 1[, then I ⊂ CL
I .

Again,the converse will still hold if we only have fast enough polynomial
decay in (3.22). Its proof explicitly uses that slow enough transport (weaker than
dynamical localization) implies that a multiscale analysis can be performed. The
estimate (3.22) is known to hold for the Anderson model on the lattice with
exponential decay, using the estimate given by the fractional moment method.(3)

4. SUMMABLE UNIFORM DECAY OF EIGENFUNCTION

CORRELATIONS

In this section we prove Theorem 1 and its corollaries.
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Proof of Theorem 1: Since Ī ⊂ CL
I , given any ζ , 0 < ζ < 1, and α, 1 < α <

ζ−1, there is a length scale L0 ∈ 6N and a mass m > 0, so if we set Lk+1 = [Lα
k ]6N,

k = 0, 1, . . . , we have (2.8) for all k = 0, 1, . . ., and x, y ∈ Z
d with |x − y| >

Lk + �.
Let I ⊂ CL

I be a bounded interval with Ī ⊂ I. Note that the quantity∥∥Wλ,ω(x)Wλ,ω(y)
∥∥

L∞(I,dµω(λ))
is measurable in ω since the L∞ norm on sets

of finite measure is the limit of the L p norms as p → ∞. (It is actually covariant
in view of the way Pω(λ) is constructed (see ref.(42), Eq. (46)), and the fact that
the measures µω and µτ (a)ω are equivalent.)

Lemma 1. Let ω ∈ R(m, L , I, x, y) (defined in (2.9)). Then∥∥Wλ,ω(x)Wλ,ω(y)
∥∥

L∞(I,dµω(λ))
≤ CI,me−m L

4 . (4.1)

Proof: Let ω ∈ R(m, L , I, x, y). Then for any λ ∈ I , either �L (x) or �L (y)
is (m, λ)-regular for Hω, say �L (x). Given φ ∈ H+, Pω(λ)φ is a generalized
eigenfunction of Hω with eigenvalue λ (perhaps the trivial eigenfunction 0), so it
follows from the EDI(33), (2.15), using χx = χx, L

3
χx , that

‖χx Pω(λ)φ‖ ≤ γ̃I ‖�x,L Rx,L (λ)χx,L/3‖x,L‖�x,LPω(λ)φ‖. (4.2)

Since �L (x) is (m, λ)-regular, we have that

‖χx Pω(λ)φ‖ ≤ γ̃I e−m L
2 ‖�x,LPω(λ)φ‖ ≤ C ′

I,m,de−m L
4 ‖T −1

x Pω(λ)φ‖, (4.3)

since

‖�x,LPω(λ)φ‖ ≤ Cd Ld−1〈 L+1
2 〉κ‖T −1

x Pω(λ)φ‖. (4.4)

Thus, using the bound (3.2) for the term in y, we get (4.1). �

If Ī ⊂ CL
I , given any ζ , 0 < ζ < 1, and α, 1 < α < ζ−1, there is a length

scale L0 ∈ 6N and a mass m > 0, so if we set Lk+1 = [Lα
k ]6N, k = 0, 1, . . . , we

have (2.8) for all k = 0, 1, . . ., and x, y ∈ Z
d with |x − y| > Lk + �.

Thus given x, y ∈ Zd and k such that Lk+1 + � ≥ |x − y| > Lk + �, it fol-
lows from (4.1) that

E

{∥∥Wλ,ω(x)Wλ,ω(y)
∥∥

L∞(I,dµω(λ))
; R(m, Lk, I, x, y)

}
≤ CI,me−m

Lk
4 . (4.5)

On the complementary set we use the bound (3.2) for both terms, obtaining

E

{∥∥Wλ,ω(x)Wλ,ω(y)
∥∥

L∞(I,dµω(λ))
; ω /∈ R(m, Lk, I, x, y)

}
(4.6)

≤ Cd P{ω /∈ R(m, Lk, I, x, y)} ≤ Cd e−Lζ

k .
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Since Lk+1 + � ≥ |x − y| > Lk + �, the estimate (3.3) now follows with ζ

α
in-

stead of ζ . Since ζ ∈]0, 1[ and 1 < α < ζ−1 are otherwise arbitrary, (3.3) holds
with any ζ ∈]0, 1[.

To prove the converse, we use the following lemma.

Lemma 2. For P-a.e. ω we have∥∥χx Pω(λ)χy

∥∥2

2
≤ Cd〈x〉2κ〈y〉2κWλ,ω(x)Wλ,ω(y) (4.7)

for all x, y ∈ Z
d , λ ∈ R.

Proof: Let {ψn}n∈N be an orthonormal basis for H. We have∥∥χx Pω(λ)χy

∥∥2

2
=

∑
n∈N

∥∥χx Pω(λ)χyψn

∥∥2

≤ [Wλ,ω(x)]2
∑
n∈N

∥∥T −1
x Pω(λ)χyψn

∥∥2
(4.8)

= [Wλ,ω(x)]2
∥∥T −1

x Pω(λ)χy

∥∥2

2

≤ Cd〈x〉2κ〈y〉2κ [Wλ,ω(x)]2,

where we used (2.6) and (2.2).
Since

∥∥χx Pω(λ)χy

∥∥
2

= ∥∥χyPω(λ)χx

∥∥
2
, the lemma follows. �

So now assume (3.3) holds for some ζ ∈]0, 1[. By B1 = B1(R) we denote the
collection of real-valued Borel functions f of a real variable with supt∈R | f (t)| ≤
1. Using the generalized eigenfunction expansion (2.7), Lemma 2, and (2.4), we
get

sup
f ∈B1

‖χx f (Hω)Pω(I )χ0‖2 ≤ sup
f ∈B1

∫
I
| f (λ)| ‖χx Pω(λ)χ0‖2 dµω(λ) (4.9)

≤
∫

I
‖χx Pω(λ)χ0‖2 dµω(λ)

≤ C
1
2

d 〈x〉κ K I

∥∥Wλ,ω(x)Wλ,ω(0)
∥∥ 1

2

L∞(I,dµω(λ))
.

Thus it follows from (3.3) that

E

{
sup
f ∈B1

‖χx f (Hω)Pω(I )χ0‖2
2

}
≤ CdCI,ζ K 2

I 〈x〉2κ e−|x |ζ ≤ C ′
I,ζ e− 1

2 |x |ζ , (4.10)
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and hence for all x, y ∈ Z
d we have

E

{
sup
f ∈B1

∥∥χx f (Hω)Pω(I )χy

∥∥2

2

}
= E

{
sup
f ∈B1

∥∥χx−y f (Hω)Pω(I )χ0

∥∥2

2

}

≤ C ′
I,ζ e− 1

2 |x−y|ζ . (4.11)

It now follows from ref.(37), Theorem 4.2 that I ⊂ CL
I �

Proof of Corollary 1: Let us consider a bounded interval I with Ī ⊂ CL
I . It

follows from (4.16) that for any φ ∈ H+ and µω-a.e. λ ∈ I we have

‖χx Pω(λ)φ‖‖χyPω(λ)φ‖ ≤ 2κCI,ξ,ωe−|x−y|ξ 〈x〉3κ〈y〉κ‖φ‖2
+

≤ CI,ξ,d,ω〈x〉3κe− 1
2 |x−y|ξ ‖φ‖2

+ (4.12)

for all x, y ∈ Z
d , where we used a consequence of (2.2), namely

‖T −1
a Pω(λ)φ‖ ≤ 2

κ
2 〈a〉κ‖Pω(λ)φ‖− ≤ 2

κ
2 〈a〉κ‖φ‖+ . (4.13)

In particular, if Pω(λ)φ �= 0 we can pick x0 ∈ Z
d such that χx0 Pω(λ)φ �= 0, and

thus

‖χyPω(λ)φ‖ ≤ CI,ξ,d,ω‖χx0 Pω(λ)φ‖−1‖φ‖2
+〈x0〉3κe− 1

2 |y−x0|ξ for all y ∈ Z
d .

(4.14)
It follows that Pω(λ)φ ∈ H, and hence µω-a.e. λ ∈ I is an eigenvalue of Hω. Thus
Hω has pure point spectrum in I , with the corresponding eigenfunctions decaying
faster than any sub-exponential by (4.14). (See, e.g., ref.(42).)

In fact, these eigenvalues have finite multiplicity, a consequence of the esti-
mate (3.4), which is proved as follows: Using (2.5) and (3.8), we have

µω({λ}) (tr Pλ,ω) = ∥∥T −1 Pλ,ω

∥∥2

2
(tr Pλ,ω)

≤ Cd

∑
x,y∈Zd

〈x〉−2κ
∥∥χx Pλ,ω

∥∥2

2

∥∥χy Pλ,ω

∥∥2

2

≤ Cd K 2
I

∑
x,y∈Z

d

〈x〉−2κ (Zλ,ω(x)Zλ,ω(y))2

≤ C ′
d K 2

I

∑
x,y∈Z

d

〈x〉−2κ Zλ,ω(x)Zλ,ω(y),

(4.15)

and hence (3.4) follows from Remark 2 and (3.8) (or from (3.9)). �
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Lemma 3. Let I be a bounded interval with Ī ⊂ CL
I . Then for all ξ ∈]0, 1[,

p ≥ 1, and P-a.e. ω we have∥∥∥∥∥∥
∑

x,y∈Zd

e|x−y|ξ 〈x〉−2κ
[
Wλ,ω(x)Wλ,ω(y)

]p

∥∥∥∥∥∥
L∞(I,dµω(λ))

≤ CI,ξ,p,ω < ∞. (4.16)

Proof: It follows from (3.3) and (3.2) that for any ξ ∈]0, 1[ and p ≥ 1 we have

E




∑
x,y∈Zd

e|x−y|ξ 〈x〉−2κ
∥∥Wλ,ω(x)Wλ,ω(y)

∥∥p

L∞(I,dµω(λ))


 ≤ CI,ξ,p < ∞, (4.17)

and hence (4.16) follows. �

In fact Lemma 3 holds for any p > 0 by modifying the proof of Theorem 1.

Proof of Corollary 2: Since when Hω has pure point spectrum in I for P-
a.e. ω the estimate (3.10) is the same as (3.3), the corollary with (3.10) follows
immediately from Theorem 1. The estimate (3.9) follows immediately from from
(3.10) in view of (3.8). To prove the converse from (3.9), note that if µω({λ}) �= 0,
we have, using (2.2) and (2.6),∥∥χx Pω(λ)χy

∥∥
1

= µω({λ})−1
∥∥χx Pλ,ωχy

∥∥
1

≤ µω({λ})−1
∥∥χx Pλ,ω

∥∥
2

∥∥χy Pλ,ω

∥∥
2

= µω({λ})−1
∥∥T −1

x Pλ,ω

∥∥
2

∥∥T −1
y Pλ,ω

∥∥
2

Zλ,ω(x)Zλ,ω(y)

≤ C ′
d〈x〉κ〈y〉κ Zλ,ω(x)Zλ,ω(y).

(4.18)

Thus, if Hω has pure point spectrum in I , (4.11) follows from (3.9), and hence
I ⊂ CL

I by(37) Theorem 4.2. �

Proof of Corollary 3: Pure point spectrum almost surely in I with eigenval-
ues of finite multiplicity follows from Corollary 1. It follows from Lemma 3
that for all ξ ∈]0, 1[, p ≥ 1, x, y ∈ Z

d , φ,ψ ∈ Ran PEn,ω,ω, n ∈ N , and i, j ∈
{1, 2, . . . , νn,ω} we have

‖χxφ‖‖χyψ‖ ≤ [
WEn,ω,ω(x)WEn,ω,ω(y)

] [‖T −1
x φ‖‖T −1

y ψ‖]
≤ 2κ〈x〉κ〈y〉κ‖T −1

x φ‖‖T −1
y ψ‖

[
CI,ξ,p,ω〈y〉2κe−|x−y|ξ

] 1
p

(4.19)

≤ C ′
I,ξ,p,ω‖T −1

x φ‖‖T −1
y ψ‖〈y〉 2(p+1)κ

p e− 1
2p |x−y|ξ

,

where we used (2.2).
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The SUDEC estimate (3.11) for given ε > 0 and ζ ∈]0, 1[ follows from
(4.19) by working with d

2 < κ < d+ε
2 , choosing p ≥ 1 such that d + ε = 2(p+1)κ

p ,

and taking ξ = 1+ζ

2 .
To prove the SULE-like estimate (3.13), for each n ∈ N we take a nonzero

eigenfunction ψ ∈ Ran PEn,ω,ω, and pick yn,ω ∈ Z
d (not unique) such that

‖χyn,ω
ψ‖ = max

y∈Zd
‖χyψ‖. (4.20)

Since for all a ∈ Z
d and φ ∈ H we have

‖T −1
a φ‖2 =

∑
y∈Zd

‖χy T −1
a φ‖2 ≤ max

y∈Zd
‖χyφ‖2

∑
y∈Zd

‖χy T −1
a ‖2

= max
y∈Zd

‖χyφ‖2
∑
y∈Zd

‖χy T −1‖2 ≤ C2
d max

y∈Zd
‖χyφ‖2,

(4.21)

we get

‖T −1
a ψ‖ ≤ Cd‖χyn,ω

ψ‖ for all a ∈ Z
d . (4.22)

It now follows from (4.19), taking ψ as in (4.20), y = yn,ω, using (4.22),
and choosing p and ξ as above, that for all x ∈ Z

d , ψ ∈ Ran PEn,ω,ω, and i ∈
{1, 2, . . . , νn,ω} we have

‖χxφ‖ ≤ C−1
d C ′′

I,ζ,ε,ω‖T −1φ‖〈yn,ω〉d+ε e−|x−yn,ω |ζ , (4.23)

which is just (3.13).
SUDEC and SULE for the complete orthonormal set {φn, j,ω}n∈N, j∈{1,2,...,νn,ω}

of eigenfunctions of Hω with energy in I follows. Note that the equalities (3.19)
and (3.20) follow immediately from (2.3).

To prove (3.14), note that it follows from (3.17) that∥∥χ{|x−yn,ω |R}φn, j,ω

∥∥2

≤ C2
I,ζ,ε,ω〈yn,ω〉2(d+ε)αn, j,ω

∑
x∈Zd ,|x−yn,ω |R

e−|x−yn,ω |ζ

≤ C ′
I,ζ,ε,ω〈yn,ω〉2(d+ε)αn, j,ωe− 1

2 Rζ ≤ 1
2 , (4.24)

if we take

R = Rn, j,ω ≥ 2
{
log

(
2C ′

I,ζ,ε,ω〈yn,ω〉2(d+ε)αn, j,ω

)} 1
ζ . (4.25)

Given L ≥ 1, we set

RL ,ω = 2
{
log

(
2C ′

I,ζ,ε,ω〈L〉2(d+ε)αn, j,ω

)} 1
ζ ≤ C ′′

I,ζ,ε,ω (log L)
1
ζ ,

SL ,ω = L + 2RL ,ω ≤ C ′′′
I,ζ,ε,ω L .

(4.26)
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Note that if |yn,ω| ≤ L we have
∥∥χ0,SL ,ω

φn, j,ω

∥∥2 1
2 for all j ∈ {1, 2, . . . , νn,ω}.

Thus, using (2.1) and (2.5), we get

1
2 NL ≤

∑
n∈N, j∈{1,2,...,νn,ω}

‖χ0,SL ,ω
φn, j,ω‖2 = ‖χ0,SL ,ω

PI,ω‖2
2

≤
∑

a∈Zd∩�SL ,ω
(0)

‖χa PI,ω‖2
2 =

∑
a∈Zd∩�SL ,ω

(0)

‖χ0 PI,τ (−a)ω‖2
2 (4.27)

≤ Cd

∑
a∈Zd∩�SL ,ω

(0)

µτ (−a)ω(I ) ≤ C ′
d Sd

L ,ω K I ≤ C̃I,ζ,ε,ω K I Ld ,

which yields (3.14). �

5. SUDEC WITH EXPONENTIAL DECAY

In this section we prove Theorem 2.

Proof of Theorem 2: Let us fix ε > 0. Since Ī ⊂ CL
I , we can pick ζ ∈]0, 1[

and α ∈]1, ζ−1[ and such that α < (1 + ε)ζ and there is a length scale L0 ∈ 6N

and a mass m = mζ > 0, so if we set Lk+1 = [Lα
k ]6N, k = 0, 1, . . . , we have

(2.8) for all k = 0, 1, . . ., and x, y ∈ Z
d with |x − y| > Lk + �. We fix ρ ∈] 2

3 , 1[

and b >
1+2ρ

1−2ρ
> 1. As in ref.(41) Proof of Theorem 6.4, we pick ρ ∈] 1

3 , 1
2 [ and

b >
1+2ρ

1−2ρ
> 1, and for each x0 ∈ Z

d and k = 0, 1, · · · define the discrete annuli

Ak+1(x0) = {
�2bLk+1 (x0) \ �2Lk (x0)

} ∩ Z
d , (5.1)

Ãk+1(x0) =
{
� 2b

1+ρ
Lk+1

(x0) \ � 2
1−ρ

Lk
(x0)

}
∩ Z

d . (5.2)

We consider the event

Fk =
⋂

y∈Zd , log 〈y〉≤(mLk+1)(1+ε)−1

⋂
x∈Ak+1(y)

R(m, Lk, I, x, y), (5.3)

with R(m, L , I, x, y) given in (2.9). It follows from (2.8) that
∑∞

k=1 P(Fc
k ) <

∞, so that the Borel-Cantelli Lemma applies and yields an almost-surely finite
k1(ω), such that for all k > k1(ω), if E ∈ I and log 〈y〉 ≤ (mLk+1)(1+ε)−1

, either
�Lk (y) is (ω, m, E)-regular or �Lk (x) is (ω, m, E)-regular for all x ∈ Ak(y). For
convenience we require k1(ω) > 1.

Using (ref.(41), Lemma 6.2) we conclude that for all y ∈ Z
d , P-a.e. ω, and

µω-a.e. λ ∈ I, there exists a finite k2 = k2(y, ω, λ) such that for all k > k2 we
have that �Lk (y) is (ω, m, λ)-singular, and moreover �Lk2

(y) is (ω, m, λ)-regular
unless k2(ω, y, λ) = 0.
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For each y ∈ Z
d we define k3 := k3(y) by(
mLk3

)(1+ε)−1

< log 〈y〉 ≤ (
mLk3+1

)(1+ε)−1

, (5.4)

when possible, with k3(y) = −1 otherwise.
We now set

k∗ := k∗(ω, y, λ) = max{k1(ω), k3(y), k2(ω, y, λ) + 1}; (5.5)

note that 1 ≤ k∗(ω, y, λ) < ∞ for P-a.e. ω, and µω-a.e. λ ∈ I.
Let φ,ψ ∈ H+ be given. Then for P-a.e. ω, and µω-a.e. λ ∈ I, if k ≥ k∗

the box �Lk (y) is (ω, m, λ)-singular and thus �Lk (x) is (ω, m, λ)-regular for
all x ∈ Ak+1(y). It follows, as in (ref.(4), Proof of Theorem 6.4), that for all
x ∈ Ãk+1(y) we have

‖χx Pω(λ)ψ‖ ≤ Cd,m〈y〉κ‖T −1Pω(λ)ψ‖e−mρ |x−y|, (5.6)

where mρ = ρ(3ρ−1)
2 m ∈]0, m[. It remains to consider the case when x ∈

� 2
1−ρ

Lk∗ (y) ∩ Z
d . If k∗ = max{k1(ω), k3(y)} > k2(ω, y, λ), we use (3.2) and, if

k∗ = k3(y), (5.4), getting

‖χx Pω(λ)ψ‖ ≤ Cd‖T −1
x Pω(λ)ψ‖emLk∗ e−mLk∗ (5.7)

≤
{

Cd〈x〉κ‖T −1Pω(λ)ψ‖e(log〈y〉)1+ε

e−m|x−y| if k∗ = k3(y)

Cd〈x〉κ‖T −1Pω(λ)ψ‖emLk1(ω) e−m|x−y| if k∗ = k1(ω)

Estimating ‖χyPω(λ)φ‖ by (3.2), we get the bound

‖χx Pω(λ)ψ‖‖χyPω(λ)φ‖
≤ Cd,ω〈x〉κ〈y〉2κ√αλ,φαλ,ψ e(log〈y〉)1+ε

e−m ′|x−y|, (5.8)

with m ′ = mρ . If k∗ = k2(ω, y, λ) + 1 > max{k1(ω), k3(y)}, we must have k2 ≥ 1
and hence �Lk2

(y) is (ω, m, λ)-regular. Using (4.3) and (2.2), we get

‖χyPω(λ)φ‖ ≤ Cd,I,m〈y〉κ‖T −1Pω(λ)φ‖e−m
Lk2

4 . (5.9)

If x ∈ � 2
1−2ρ

Lk2
(y) ∩ Zd , we may bound the term in x by (3.2) and get (5.8) with

m ′ = (1−2ρ)m
4 and another constant Cd,ω. Since x ∈ � 2

1−ρ
Lk2+1

(y) ∩ Z
d , we cannot

have x /∈ � 2b
1+2ρ

Lk2+1
(y) ∩ Z

d by our choice of b and ρ. Thus the only remaining

case is when x ∈ Ã′
k2+1(y), where Ã′

k2+1(y) is defined as in (5.2) but with 2ρ

substituted for ρ. If all boxes �Lk2
(x ′) with |x ′ − x | ≤ ρ|x − y| are (ω, m, λ)-

regular, the argument in (ref.(4), Proof of Theorem 6.4) still applies, and hence
we also get (5.6) and (5.8) with with m ′ = mρ . If not, there exists x ′ ∈ Ãk2+1(y)
with |x ′ − x | ≤ ρ|x − y| such that �Lk2

(x ′) is (ω, m, λ)-singular. Clearly, x ′ ∈
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Ãk2+1(y) if and only if y ∈ Ãk2+1(x ′). In addition, since k3(y) ≤ k2(ω, y, λ) we
have k3(x ′) ≤ k2(ω, y, λ) + 1, as

log 〈x ′〉 ≤ 1
2 log 2 + log 〈y〉 + log 〈bLk2+1〉 ≤ (

mLk2+1
)(1+ε)−1

. (5.10)

Thus, as k2 ≥ k1(ω), we can apply the argument leading to (5.6) in the annulus
Ãk2+1(x ′), obtaining

‖χyPω(λ)φ‖ ≤ Cd,m〈x ′〉κ‖T −1Pω(λ)φ‖e−mρ |x ′−y| (5.11)

≤ C ′
d,m〈y〉κ‖T −1Pω(λ)φ‖e−ρ(1−ρ)mρ |x−y|, (5.12)

where we used |x ′ − x | ≤ ρ|x − y| and |x ′ − y||x − y| − |x ′ − x |(1 − ρ)|x − y|.
Estimating ‖χx Pω(λ)ψ‖ by (3.2), we get the bound

‖χx Pω(λ)ψ‖‖χyPω(λ)φ‖ ≤ Cd,ω〈x〉κ〈y〉κ√αλ,φαλ,ψ e−m ′ |x−y| (5.13)

with m ′ = ρ(1 − ρ)mρ .
The thorem is proved. �

6. DECAY OF THE FERMI PROJECTION

In this section we prove Theorem 3.

Proof of Theorem 3: Let I and I1 be bounded open intervals with Ī ⊂ I1 ⊂
Ī1 ⊂ CL

I . It follows from (ref.(33), Theorem 3.8) that for all ζ ∈]0, 1[ we have

E

{
sup
f ∈B1

∥∥χx f (Hω)Pω(I1)χy

∥∥2

2

}
≤ CI1,ζ e−|x−y|ζ for all x, y ∈ Z

d . (6.1)

We write I = (α, β), and fix δ = 1
2 dist(I, ∂ I1) > 0. Given ζ ∈]0, 1[, we

choose ζ ′ ∈]ζ, 1[. Since Hω is semibounded, we can choose γ > −∞ such
that � ⊂]γ,∞[. We pick a L1-Gevrey function g of class 1

ζ ′ on ]γ,∞[,
such that 0 ≤ g ≤ 1, g ≡ 1 on ] − ∞, α − δ] and g ≡ 0 on ]β + δ,∞[. (See
ref.(8), Definition 1.1); such a function always exists.) For all E ∈ I we have
P (E)

ω = g(Hω) + fE (Hω), where fE (t) = χ]−∞,E](t) − g(t) ∈ B1, with fE (Hω) =
fE (Hω)Pω(I1). Using (ref.(8), Theorem 1.4), for P-a.e. ω we have∥∥χx g(Hω)χy

∥∥ ≤ Cg,ζ,ζ ′ e−Cg,ζ,ζ ′ |x−y|ζ for all x, y ∈ Z
d . (6.2)

On the other hand, it follows from (ref.(33) Eq. (2.36)) and the covariance (2.1) that
for P-a.e. ω∥∥χx g(Hω)χy

∥∥
1

≤ ‖χx g(Hω)χx‖
1
2
1

∥∥χy g(Hω)χy

∥∥ 1
2

1
≤ Cg for all x, y ∈ Z

d .

(6.3)
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Since ‖A‖2
2 ≤ ‖A‖ ‖A‖1 for any operator A, we get∥∥χx g(Hω)χy

∥∥2

2
≤ C ′

g,ζ,ζ ′ e−C ′
g,ζ,ζ ′ |x−y|ζ for all x, y ∈ Z

d . (6.4)

The estimate (3.22) for all ζ ∈]0, 1[ now follows from (6.1) and (6.4).
To prove the converse, let us suppose (3.22) holds for some ζ ∈]0, 1[.) Let

X ∈ C∞
c,+(I ). By the spectral theorem,

e−i t HωX (Hω) =
∫

e−i t EX (E)Pω(dE) = −
∫ (

e−i t EX (E)
)′

P (E)
ω dE

= −
∫

I

(
e−i t EX (E)

)′
P (E)

ω dE . (6.5)

Thus for all n > 0 we have∥∥∥〈x〉 n
2 e−i t HωX (Hω)χ0

∥∥∥
2

≤ CX (1 + t)
∫

I

∥∥∥〈x〉 n
2 P (E)

ω χ0

∥∥∥
2

dE, (6.6)

and hence

E

{∥∥∥〈x〉 n
2 e−i t HωX (Hω)χ0

∥∥∥2

2

}

≤ C2
X (1 + t)2

E

{{∫
I

∥∥∥〈x〉 n
2 P (E)

ω χ0

∥∥∥
2

dE

}2
}

(6.7)

≤ C2
X (1 + t)2|I |

∫
I
E

{∥∥∥〈x〉 n
2 P (E)

ω χ0

∥∥∥2

2

}
dE ≤ CX ,I,n,ζ (1 + t)2,

where we used (3.22) to get the last inequality. It follows that

M(n,X , T ) := 2

T

∫ ∞

0
e− 2t

T E

{∥∥∥〈x〉 n
2 e−i t HωX (Hω)χ0

∥∥∥2

2

}
dt

≤ C ′
X ,I,n,ζ (1 + T 2), (6.8)

hence

lim inf
T →∞

1

T α
M(n,X , T ) < ∞ for all α ≥ 2 and n > 0. (6.9)

It now follows from (ref.(37), Theorem 2.11) that I ⊂ CL
I . �
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